Antimatroids, Betweenness, Convexity
نویسنده
چکیده
Korte and Lovász [12, 13] founded the theory of greedoids . These combinatorial structures characterize a class of optimization problems that can be solved by greedy algorithms. In particular, greedoids generalize matroids , introduced earlier by Whitney [16]. Antimatroids , introduced by Dilworth [3] as particular examples of semimodular lattices, make up another class of greedoids. Antimatroids are related to abstract convexity; let us explain how. Kay and Womble [11] defined a convexity space on a ground set E as a tuple (E,N ), where N is a collection of subsets of E such that ∅ ∈ N , E ∈ N , and N is closed under intersections. Members of N are called convex sets . The convex hull of a subset X of E is defined as the intersection of all convex supersets of X and is denoted by τN (X). Independently of each other, Edelman [6] and Jamison [9] initiated the study of convexity spaces (E,N ) with the anti-exchange property
منابع مشابه
Several Aspects of Antimatroids and Convex Geometries Master's Thesis
Convexity is important in several elds, and we have some theories on it. In this thesis, we discuss a kind of combinatorial convexity, in particular, antimatroids and convex geometries. An antimatroid is a combinatorial abstraction of convexity. It has some di erent origins; by Dilworth in lattice theory, by Edelman and Jamison in the notions of convexity, by Korte{Lov asz who were motivated by...
متن کاملAntimatroids Induced by Matchings
An antimatroid is a combinatorial structure abstracting the convexity in geometry. In this paper, we explore novel connections between antimatroids and matchings in a bipartite graph. In particular, we prove that a combinatorial structure induced by stable matchings or maximumweight matchings is an antimatroid. Moreover, we demonstrate that every antimatroid admits such a representation by stab...
متن کاملConvexity properties for interior operator games
Interior operator games arose by abstracting some properties of several types of cooperative games (for instance: peer group games, big boss games, clan games and information market games). This reason allow us to focus on different problems in the same way. We introduced these games in Bilbao et al. (Ann. Oper. Res. 137:141–160, 2005) by a set system with structure of antimatroid, that determi...
متن کاملThe forbidden minor characterization of line-search antimatroids of rooted digraphs
An antimatroid is an accessible union-closed family of subsets of a 0nite set. A number of classes of antimatroids are closed under taking minors such as point-search antimatroids of rooted (di)graphs, line-search antimatroids of rooted (di)graphs, shelling antimatroids of rooted trees, shelling antimatroids of posets, etc. The forbidden minor characterizations are known for point-search antima...
متن کاملCombinatorics of lopsided sets
We develop a theory of isometric subgraphs of hypercubes for which a certain inheritance of isometry plays a crucial role. It is well known that median graphs and closely related graphs embedded in hypercubes bear geometric features that involve realizations by solid cubical complexes or are expressed by Euler-type counting formulae for cubical faces. Such properties can also be established for...
متن کامل